Estimating Information Rates with Confidence Intervals in Neural Spike Trains
نویسندگان
چکیده
Information theory provides a natural set of statistics to quantify the amount of knowledge a neuron conveys about a stimulus. A related work (Kennel, Shlens, Abarbanel, & Chichilnisky, 2005) demonstrated how to reliably estimate, with a Bayesian confidence interval, the entropy rate from a discrete, observed time series. We extend this method to measure the rate of novel information that a neural spike train encodes about a stimulus--the average and specific mutual information rates. Our estimator makes few assumptions about the underlying neural dynamics, shows excellent performance in experimentally relevant regimes, and uniquely provides confidence intervals bounding the range of information rates compatible with the observed spike train. We validate this estimator with simulations of spike trains and highlight how stimulus parameters affect its convergence in bias and variance. Finally, we apply these ideas to a recording from a guinea pig retinal ganglion cell and compare results to a simple linear decoder.
منابع مشابه
Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes
Neural spike trains present challenges to analytical efforts due to their noisy, spiking nature. Many studies of neuroscientific and neural prosthetic importance rely on a smoothed, denoised estimate of the spike train’s underlying firing rate. Current techniques to find time-varying firing rates require ad hoc choices of parameters, offer no confidence intervals on their estimates, and can obs...
متن کاملEstimating the Temporal Interval Entropy of Neuronal Discharge
To better understand the role of timing in the function of the nervous system, we have developed a methodology that allows the entropy of neuronal discharge activity to be estimated from a spike train record when it may be assumed that successive interspike intervals are temporally uncorrelated. The so-called interval entropy obtained by this methodology is based on an implicit enumeration of a...
متن کاملDifferential Entropy of Multivariate Neural Spike Trains
Most approaches to analysing the spatiotemporal dynamics of neural populations involve binning spike trains. This is likely to underestimate the information carried by spike timing codes, in practice, if they involve high precision patterns of inter-spike intervals (ISIs). In this paper we set out to investigate the differential entropy of multivariate neural spike trains, following the work of...
متن کاملDiscussion on the Spike Train Recognition Mechanisms in Neural Circuits
The functions of neural system, such as learning, recognition and memory, are the emergences from the elementary dynamic mechanisms. To discuss how the dynamic mechanisms in the neurons and synapses work in the function of recognition, a dynamic neural circuit is designed. In the neural circuit, the information is expressed as the inter-spike intervals of the spike trains. The neural circuit wi...
متن کاملChapter 2 Extracting Information From Spike Trains
A fundamental task of any information theoretic analysis of the neural code is to estimate the mutual information (MI) that neural responses convey about a set of stimuli. This estimation task is then used as a building block for more advanced questions such as " What aspects of the stimuli do neurons code? " or " How do neurons interact to transmit information together? ". This information est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 19 7 شماره
صفحات -
تاریخ انتشار 2007